CLASS OF SOLUTIONS FOR FLOW NEAR
A STAGNATION POINT

I. A, Belov UDC 532,517 .43

This paper considers a class of solutions for flow of a perfect gas near the stagnation point
on a two~dimensional ohstacle, where the flow is rotational far upstream from the obstacle,
It is shown that the potential flow near the stagnation point is a special case of this class of
solutions. Solutions accounting for the rotationality of the outer flow are obtained for flow
in the mixing layer with an obstacle, and these solutions differ appreciably from the analo-
gous Jimenez solution for potential flow near the stagnation point on a two~dimensional ob-
stacle,

We consider two-dimensional flow of an incompressible fluid flowing normal to a two-dimensional
obstacle of infinite length, in a rectangular coordinate system xOy, where x is directed along the obstacle,
and y is normal to it. The flow region is bounded by the surface y = 0 at the obstacle, with stagnation point
x =y =0, and the section y,, , where the effect of the obstacle is negligible, or where the well-known law
is assumed for deformation of the velocity profile of the exterior flow by the obstacle., The Jimenez solu-
tion is well known, describing viscous flow near the stagnation point for external potential flow {1]. We
show that this problem can also be solved for more complex flows, when the outer flow of a perfect fluid is
rotational, The presence of vorticity at the outer boundary of the viscous mixing layer at the obstacle
leads in this case to certain differences from the Jimenez solution,

1. Let the stream of perfect fluid incident on the obstacle be uniform, with speed Vo at V=Ype
Putting v, Ve = —F(¥/¥,), We obtain from the continuity and vorticity-transfer equations

ulVe=F'alye; FF'"" — F'F" =0, (t.1)

where v and u are the velocity components normal to and tangential to the obstacle, respectivaly,

The solution of Eq. (1.1) with boundary conditions V/¥% =0, F=0;y/y =1, F=1, F' = 0 has the

form
F= sin,—ﬂ,1 . (1.2)
2 ¥
It follows from Eq. (1.2) that
e Vosinll, o8 ety (1.3)
T Ty T 2y, 2y

It can be shown that this solution corresponds to flow far from the obstacle when the vorticity depends
linearly on the coordinate x:
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2. There are cases where it is of interest to analyze flow near the stagnation point, when the outer
flow incident on the obstacle is not uniform, but varies with x according to some law different from linear.
We shall show that there exists a solution of type (1.3) for a specific class of functions describing the var-
iation of the outer flow velocity with x. We seek a solution for the normal velocity component in the form

VIV y=—F (41oe) @' (x/goo), (z.1)

where V, is the characteristic velomty at the section y =y_. Then for the velocity componeut tangential
to the obstacle we have

Wl Vo=F'(gly-)D(z/ys0). 2.2)

From the vorticity-transport equation, and taking account of Egs. (2.1) and (2.2), we have

VRN 1 L " __ R
DD m)«/n Q" _ FF FFF F7 _ onst. (2.3)

Taking the constant in Eq, (2.3) equal to zero, we obtain two equations of type (1,1) in $and F. The solu-
tion of these for boundary conditions,

yyeo=0, F=0; ylya=1, F=1, F'=0; (2.4)
x/yw_() D=0; z/y= _a:w!yw, D=1,
O'=0
has the form
F=sinltY: ®=gint = (2.5)
2 ¥ 2z
It follows from Eq, (2.5) that
ve=— - y""V sin = -—cos—g-; ; (2.6}

If we assume that the velocity V,, has the same value on the axis of symmetry at y = y, as in the previous
case, it follows from Eq, (2.6) that Vy = V_/®'(0), The solution obtained represents flow with vorticity
equal to
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3. Taking a nonzero value for the constant in Eq, (2.3), we obtain the following two equations deter-
mining ideal flow near a stagnation point:

FF'"'— F'F"— AFF'=0; ®O""'— O'Q"'— A0P'=0, ©.1)

The solution of these for boundary conditions (2.4) was obtained numerically on the BESM-4 computer by
a Runge— Kutta method, to an accuracy of 10~°, for a number of values of A, The search for an additional
boundary condition was carried out using Newton's method, i.e., f[F"(1)] = |F(0)| < &, where ¢ =107 is
the allowable error in applying the boundary condition. The results of the solution are presented for the
functions F and F' (broken lines) in Fig. 1 (curves 1-5 are for A =20, 5, 0.1, —5 and — 14, respectively).
The functions &, &' have a similar form,

We now find the range of variation of parameter A for which Egs. (3.1) have a solution. We consider
an equation for F(y/y,). Using the condition F'(1) = 0, this can be writtea in the form

F”=<c—:§)(1r2—1)+AF21nF. (3.2)

It can be seen from the last equation that a necessary condition for obtaining real roots of the function '
is the condition (C — A/2) = 0 for negative A, i,e., C =<A/2, A <0. Since with A =0 C =—7r2/4, Eq. (3.2}
has a solution for all negative A, For A > 0 the region of positive roots of F' is given by the condition

|AF% 10 F o < (€ — 4/2) (Fr — 1), 3.3)
where Fy, corresponds to F with max(Fin F), Taking into account Eq, (3,3), we obtain — < C < {Al/5,
We now find the solution of Eq. (3.2) with C = A/2, A <0, In this case

F=oxp7(1— wly=):

i.e., the solution for boundary conditions (2.4) 1s valid only tor A — —«, and therefore the condition C =
A/2 holds approximately only when A «< 0,

The solution of Egs. (3.1) corresponds to outer flow vorticity Q (1) (Fig, 2, curves 1-5 with A =20, 5
0.1, —5, and —14, respectively):

b
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| z @ x/ oo "
Q) = -;;—:F”(i) [cb(y—;)+ —7%—)] — oo < F"(1) < |AI/5,

where X =y ; and V, is the characteristic velocity at the outer boundary y = y.. Denoting V,, as the
maximum velocity at y = y,,, we obtain that V; = V_/max [®'(x/y )],

For A « 0 an expression for the vorticity in the outer flow (at x = y.,) can be written approximately
in the form

0w =2V [1+ (12 owe [ (1)

Yoo

To classify the solutions obtained we note that the parameter A is a shape factor for the velocity
profile of the flow incident on the obstacle., For A =0 the maximum velocity in the incident flow coincides
with the axis of symmetry, and for A < 0 the maximum velocity is displaced away from the symmetry axis,

4. We now investigate the effect of a transfer velocity component U,, at the outer boundary y =y,
of the region of interaction between a perfect fluid and an obstacle. Let A = 0 and F(1) =1; F'(1) = B, where
U, =BV_¢(x). Then for F(0) = 0 we obtain the following equation for F(y/y.):

e (4.1)
F=x3VB—-C ]/1 — e %, C=F" (1),

If C/(C—B? > 0, then for C =0 F' has real roots for any B. Since V—C = /2 at B = 0, in the in-
tervai [ — 7/2, 0] the solution of Eq. (4.1) has the form

Fsin Y —C=sin V' —Cyly,,
and, as follows from the condition F(1) = 1, the quantity v— C depends on B as follows:

B=+V —Cctg V' —C. (4.2)

It can be seen from Eq. {4.2) that V= C— 0 as B— x1. The last value at B = 1 corresponds to flow of a
potential fluid near the stagnation point on the obstacle: F = y/y.; V = —Vo¥/Vw ; 1 = VoX/¥o, and for B =
—1 it corresponds to potential flow away from an obstacle,

Assuming C/(C — B?) < 0, we obtain for C > 0, B*=C:

Fsh¥C =shV Cylyo,
where YC is connected with B by the relationship
B=+VTCcth VC.
The solutions obtained for A = 0 correspond to flow at the outer boundary y = y. with vorticity equal

to

Yx) = — Vo = const;

_°°f£_: in3 =,
‘m2 3z
—Ve

ool

V(Y =Yw) =

where C = F"(1), and C < 02 5 0, and C >.0 2<0.
Similar relationships can be obtained also for flow with a shape factor A =0,

5. The cases considered with flow of a perfect fluid near the stagnation point require specific con-
ditions as regards the flow vorticity at a given distance from the obstacle in order to be realized in prac-
tice. It is clear that flow vorticity due to the action of viscous forces can be obtained by choosing the
shape of the channel in which the flow is formed, and also by planned mixing of the flow in the channel or
in the surrounding medium. Examples of this kind of flow are flow in converging and diverging channels,
secondary flows, including secondary flow behind a body washed in a longitudinal direction [1, 2], and flows
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in jets with uniform and nonuniform velocity profiles at the nozzle exit {3]. In the last case one can identify
a number of physical analogs of the solutions obtained, well known from practical use of the effects of in-
teraction of a jet with obstacles. For example, the solution when the profile shape factor of the flow inci-
dent on the obstacle A > 0 corresponds to the case of interaction of a subsonic jet with an obstacle within
the main section of the jet, while the case A < 0 corresponds to interaction in the initial section, where the
obstacle deforms the velocity profiles of the jet at the nozzle exit, i.e., for small distances between the ob-
stacle and the nozzle exit [4, 5].

We now examine the effect of profile shape of the flow incident on the obstacle on the character of the
flow near the obstacle. To do this we consider viscous flow in a layer near an obstacle, when the outer
flow is described by velocity-profile shape factors which differ in magnitude and sign. We take the Navier—
Stokes equations as the initial system of equations determining the viscous flow, We formulate the bound-
ary conditions. It follows from the solution for a perfect fluid that the velocity gradient at the stagnation
point at X, = ¥y is

@), =~ i=F O

Wy T max [ (/)]

where V_ is the maximum velocity at the section y = y_, (for A =0 the maximum velocity is on the axis of
symmetry x = 0 and for A < 0 it is displaced outwards from the symmetry axis),

Using the notation g = V,F'(0)/y,,, and taking into account that the variation of the velocity normal
to the obstacle is nearly linear at small distances from the obstacles (y — 0), we can adopt the relationship

v(0) = — O (2/y) Y/ @; %(o0) = D (2[ye0) Yo/ Oy

—

as an outer condition for viscous flow near the obstacle, where v, u =v, u/Vgv; X, y = (%, y)V8v (v is the
coefficient of kinematic viscosity);

@ = max [0 (5]

As the boundary condition at the wall we use the condition for nonslip of the fluid at the wall: u(0) = v(0) = 0.

We represent the function &'(X/¥,)/ & m in the form of a power series containing only even powers
of x (the Blasius series [1]):

e S‘(““n"% oo (1 (L) =)

H

m n=§ oo

and look for a solution for v, U in the viscosity mixing layer near the obstacle (0 =y =) in the form of
the appropriate series:

l; =‘_ 2 (— 1)“ Gznﬂzzann (&)’ -

“2n+i

—_ hod a,n

where a,, are known coefficients for series expansion of ' (X/F o)/ @'yt and £y, (¥) are functions of y sub-~
ject to definition,

The Navier—Stokes equations in the form of the vorticity-transport equation give the following equa-~
tion for fm(y)

X (—1)" azniz"—3[ =t fon + 4na®fs, + 4n(2n — 1) X

n=0 2n -1
> (n_i)fzn}er? (— 1)y, a2+~ 1{x [ginizi _ o)
fanls
_ (2:+2f) k] + 2k (fznfzh 1 onka)} 0.
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Equating coefficients of identical powers of X, we obtain a system of ordinary differential equations
of fourth order to determine the functions fy, fy, f;,... . The boundary conditions for the functions f,, are
obtained from the condition y = 0 and y — ooz

5‘—:0’ on:f:;,n=O; ,;"—* oc, f;nzi, f;nz() (5.2)
The system of equations (5.1) with boundary conditions (5.2) was solved numerically by a method of suc-
cessive approximations, using a Runge— Kutta method to an accuracy of 10~% on a BFSM-4 computer. Since
each of the n equations contains n unknown functions and their derivatives, we assume in the first approxi-
mation that all the functions and their derivatives, except f;, are zero, Thus, for n = 0, we obtain the Ji-
menez equation, whose solution is known [1],* In solving the second equation (n = 1) we use the results for
the function f; and its derivatives at each step of integration, assuming all the f,; (n = 2, 3,...) and their
derivatives to be zero. The assignment of fj, fo, fy". ete,, inthe form of stepwise functions at each integra-
tion step does not introduce appreciable error and does not affect the convergence process to the conditions
with ¥ — «, and this was checked by varying the integration step. The optimum step, A§ = 0,05, was chosen
from the condition |f,,( e, A;,)— fon (=, 2AR < 1075, The solution for the subsequent equations withn=2,3,..was
carried out analogously. Using the results of the first approximation, we proceeded to the next approxima-
tion, using the above-mentioned scheme, The number of approximations was determined from the condi-
tion lfm(oo, £+ 1) ~fyp{eo, t)] <10™%, where t, t + 1 are the numbers of the approximations. The search for
additional boundary conditions necessary to begin the computation was carried out, as in the case when
solving the ideal problem, by Newton's method, in such a way that Fy[f'y, ()] = |fyp() — 1| < &; Fy[fh,()]=
[f'hn() | < €, where & = 1074 is the allowable error in applying the boundary conditions.

The initial data for the computation were as follows: V_ =8m/sec; Xeo = Yoo = 0,05 m; p = 1.5 +107°
m? / sec. Inpractice, the convergence of the series in Eq. (5.1), as later calculations showed, was quite
good, and therefore only a finite number of terms ( n, k = 4) of the above series was required for approxi-
mate solution of the problem of viscous flow near a stagnation point, Figure 3 shows the profiles of the
velocity component @ in the boundary layer over an obstacle with A = 5.0, with X/X,, = 0,125 (curve 1); A =
5,0 with /%, = 0,75 (curve 2); and A =—14 with £/%,, = 0.75 (curve 3), The figure also shows results cor-
responding to the Jimenez solution [1] for flow near a stagnation point on a two-dimensional flat plate and
uniform outer incident flow (curve 4). Curve 4 corresponds also to the Jimenez solution for a cylinder of
radius R = 2y, /F'(0), F'(0) =2 and R—2y_ /(F'(0)ay), F'(0) = 0.35, gy = 0.218 for X/&s = 0.125. Curve 5
corresponds to the Jimenez solution for a cylinder of radius R=2y./F'(0), F'(0) = 2 for X/X_ = 0.75, The
difference in the velocity profiles for the types of flow considered near the stagnation point of an obstacle
and a cylinder with uniform outer flow results from the different nature of the velocity distribution over
the obstacle in the outer flow (curves 6 and 7 are for outer-flow velocity-profile shape factors A = 5.0
and —14.0, respectively). Near the stagnation points (X/X_ = 0.125) the velocity profiles in both cases con-
sidered practically coincide with the Jimenez profile (the part of the outer flow with constant acceleration).
Further from the stagnation point there is an increase in the gradient of velocity & in the direction normal
to the obstacle for outer flow with a peripheral maximum velocity A < 0 (the accelerated section of the
outer flow is along the obstacle) and a reduced velocity gradient u in the direction normal to the wall for
flow with a central maximum velocity A = 0 (the deceleration section for outer flow over an obstacle).
Figure 4 shows the distribution of friction on the obstacle wall for incident flow with a central maximum
velocity (curve 1) and a peripheral maximum velocity (curve 2):

T ' v
~ —aF (O g% 5 Re=—2'=
(1% Re € dylg—p v

oo

Curves 3-5 correspond to the Jimenez solution for uniform outer flow incident on a two-dimensional ob-
stacle:

w B (B\/2- -
5/2—123259- V_O;(T) 7 /7.

The value g = (n/ 2)V, / ¥ (curve 3) corresponds to a uniform stream located above the obstacle at the
given distance yw. The value g =V_F'(0)/y,, = B; (curve 4) corresponds to flow over the obstacle of a
uniform stream with a velocity gradient at the stagnation point equal to the velocity gradient at the stagna-
tion point in flow of an outer stream with a central maximum over a two-dimensional obstacle. The value
B =V aoF'(0) /Yo = Pox (curve 5) corresponds to flow over the obstacle of a uniform stream with a velocity

* For g, # 1 a correction is applied to the value of B: B (ag #1) = V_F'(0)ay/y0-
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gradient at the stagnation point equal to that at the stagnation point in flow over the obstacle of an outer
stream with a peripheral velocity maximum, In the last two cases, as is shown by the expressions derived
for g, the obstacle must be brought close tothe stream, toa distance 0,785 yo (with the condition that the
flow at this distance remains undisturbed), and, conversely, must be withdrawn from the stream to a dis-
tance 20.6 y., where y,, corresponds to the distance from the obstacle at which the assumed nonuniformity
of the external stream is maintained. Finally, curve 6 corresponds to the Jimenez solution for a cylinder
of radius R =2y_ F'(0) (A =5.0). Inthe case A =—14,0 the Jimenez solution for a cylinder of radius R =
2y../(F'(0)ay) practically coincides with the Jimenez solution for a two-dimensional obstacle {(curve 5),

The results shown in Fig,. 4 allow several special features to be identified in the nature of the fric-
tion distribution near the stagnation point on a two-dimensional obstacle, located normal to an external
nonuniform flow:

1. There is a strong dependence of friction on veloeity gradient at the stagnation point for all types
of outer flow examined. The velocity gradient at the stagnation point is determined by the conditions of
flow stagnation near the obstacle, and, as is shown in the present analysis, by the conditions for formation
of the flow at a given distance from the obstacle.

2, For flow with a central maximum velocity (A =0) the value of the velocity gradient at the stagna-
tion point, 8 = Vo F'(0) /¥, gives the friction at the wall near the stagnation point, equal to the friction cal-
culated for a uniform flow incident on a two-dimensional obstacle and a circular cylinder of radius R =
2y, /F'(0). In the latter case the friction on a two-dimensional obstacle, washed by a nonuniform flow, and
on the surface of a cylinder, washed by a uniform flow, practically coincide for the whole range of x varia-
tion considered. This follows from similarity in the law for velocity distribution in the outer flow over the
surface of the embedded bodies, The analogy between flow over a cylinder and flow normal to an obstacle,
based on similarity of velocity profiles of the outer flow over the surface of embedded bodies and on the
equality of corresponding velocity gradients at the stagnation point, suggests the need, as has already
been mentioned, to reduce the initial distance Ve (for A = 5.0) between the obstacle and the undisturbed
outer flow to the value of (r/4)y. . If we require that the value of y,, remains unchanged, then, as follows
from comparison of the expression for the velocity gradient at the stagnation point on the obstacle due to
uniform and nonuniform external flows, we find that the given condition is satisfied only for one value
F'(0) = n/2, i.e., for a sinusoidal variation of velocity of the outer flow over the obstacle, when the shape
factor of the outer-flow velocity profile A = 0. For nonzero values of A, with the condition that the distance
¥, remains constant, we can use the analogy between flow of a nonuniform stream over a two-dimensional
obstacle and over a body whose shape differs from a circular cylinder. In fact, as follows from Fig. 1, an
increase in the value of A leads to an increase in velocity gradient at the stagnation point and to a more
rapid "filling out" of the velocity profile of the outer flow over the obstacle, The same effect is observed
for flow of a uniform stream over an elliptic cylinder in the longitudinal direction (parallel to the major
axis).,

For flow with a peripheral velocity maximum (A < 0) we observe a sharp reduction in the friction
at the wall (by an order of magnitude) in comparison with the stream having a central velocity maximum,
The friction distribution in this case, as in the case of outer flow with a central velocity maximum, fol-
lows the velocity distribution law in the outer flow over the obstacle, and it is therefore natural to find a
large discrepancy between the results obtained and the Jimenez data for a uniform flow washing a circular
cylinder or an obstacle located normal to the flow,
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